NUMBER SYSTEM
➦प्राकृतिक संख्या(Natural Numbers) - गिनती की संख्या को प्राकृतिक संख्या कहते है |
EX- 1,2,3,4,5,6,..........∞
TRICK
➤TYPE(1)-चार लगातार प्राकृतिक संख्याओं का गुणनफल हमेशा 24 से पूरणतः विभाज्य होता है |
EX- 5×6×7×8÷24, 101×102×103×104÷24
➤TYPE(2)- दो लगातार प्राकृतिक संख्याओ के गुणनफल में बड़ी संख्या जोड़ने पर परिणाम पूर्ण वर्ग होगा |
EX- 7×8=56+8=64
Q. 442×443 के परिणाम में कम से कम कितना जोड़ा जाए ताकि पूर्ण वर्ग हो जाए |
Ans- 443
➤TYPE(3)- दो लगातार प्राकृतिक संख्याओ के गुणनफल में से छोटी संख्या घटाया जाए तो परिणाम पूर्ण वर्ग होगा |
EX- 18×19=342₋18=324, 11×12=132₋11=121
➤TYPE(4)- दो लगातार प्राकृतिक संख्याओ के वर्गों का अंतर उनके योगफल के बराबर होता है |
EX-18²₋17²=(18+17) (18₋17)
= 18+17=35 Ans
12²₋11²= 23 Ans
➤ प्रथम n प्राकृतिक संख्याओ का योग= n(n + 1)/2
EX- 1+2+3+......+50=?
?= 50×51 ∕ 2=1275 Ans
EX- 1+2+3+.......+20= ?
? = 20×21∕ 2=210 Ans
Q.50 एवं 100 के बीच आने वाले प्राकृतिक संख्याओ का योग ज्ञात कीजिए।
solution - 51+52+53+54+.........+99
= (1+2+3+........+99)₋(1+2+3+.....+50)
= 99×100 ∕ 2 ₋ 50×51 ∕ 2= 4950₋1275=3675 Ans
TRICK➤
बीच वाले प्राकृतिक संख्याओ का योग = योगफल ×(अन्तर +1) ∕ 2
150×(48+1) ∕ 2= 75×49=3675 Ans
Q. 11+12+13+.......+49= ?
solution-
60×(38+1) ∕ 2= 30×39= 1170 Ans
Q.1²₋2²₊3³₋ 4²₊5²₋6².......2n पदों का योग ज्ञात कीजिए।
solution-
₋(1+2+3+4+5+6+.......2n पदों तक )
₋2n (2n +1) ∕ 2 = ₋n (2n +1)Ans
➤ प्रथम n प्राकर्तिक संख्याओं के वर्गों का योग = n(n+1)(2n+1) ∕ 6
➤ प्रथम n प्राकर्तिक संख्याओं के घनो का योग = {n (n +1) ∕ 2 }²
Q. 1²+2²+3²+..............+20²=?
solution-
20(20+1)(2×20+1) ∕ 6=20×21×41 ∕ 6=2870 Ans
Q. 1³+2³+3³+..........+11³=?
solution-
{11×(11+1) ∕ 2}²= (66)²=4356 Ans
➦ प्राकर्तिक संख्याओं के प्रगोग पर आधारित प्रश्न
x, x+1, x+2, x+3...............................
Q. 4 लगातार प्राकर्तिक संख्याओं का योग 222 हो तो सबसे बड़ी संख्या ज्ञात कीजिए।
solution-
x, x+1, x+2, x+3
= 4x+6=222
= 4x=216
x = 54
सबसे बरी संख्या = 54+3=57 Ans
Q. 2 लगातार प्राकर्तिक संख्याओं का योगफल 552 हो तो संख्याओं का योग कितना होगा।
solution -
संख्या = x, x+1
x(x+1)=552
x²+x-552=0
x²+24x-23x-552=0
x(x+24)-23(x+24)
(x-23) (x+24)=0
x=23 ,-24✖
योग = 23+24 =47 Ans
trick 552
⋀
23 24 =23+24=47 ans
NOTE:- गुणनफल के नजदीक जिस संख्या का वर्ग आएगी वही दो संख्या Ans होगा।
Q. 2 लगातार प्रकर्तिक संख्याओं का गुणनफल 342 हो तो संख्या ज्ञात करें।
solution - 342
⋀
18 19 = 18+19=37 Ans
Q. 3 लगातार प्रकर्तिक संख्याओं के वर्गों का योग 770 हो तो संख्याओं का योग ज्ञात करें।
solution - x, x+1, x+2
= x²+(x+1)²+(x+2)²=770
= x²+x²+2x+1+x²+4x+4-770=0
= 3x²+6x-765=0
= x²+2x-255=0
= x²+17x-15x-255=0
= (x+17)(x-15)=0
= x=15
= 15,16,17
योग= 48 Ans
trick 770/3=256
=15,16,17=48 Ans
NOTE:- योगफल में संख्या से भाग देंगे और पूर्ण वर्ग संख्या आने पर उसे बीच में रखेंगे और पूर्ण वर्ग संख्या नहीं आने पर नजदीक वाला VALUE चुनेंगे।
Q.2 लगातार प्रकर्तिक संख्याओं के वर्गों का योग 841 हो तो संख्या ज्ञात करें।
solution- 841/2=420
⋀
20 21, 20²=400
21²=441, 400+441=841
(1) सभी अभाज्य सँख्या विषम संख्या होती है केवल 2 को छोडकर।
(2) 2 केवल एक सम अभाज्य सँख्या है।
(3) 1 से 100 के बीच में 25 अभाज्य सँख्या होती है जबकि 1 से 50 तक 15 अभाज्य सँख्या होती है
(5) 5 बड़ी किसी अभाज्य सँख्या में 6 से भाग देने पर शेष 1 या 5 प्राप्त होगा।
EX:- 6÷13=1शेष, 6÷83=5शेष
➤ TYPE(5):- तीन से बड़ी किसी अभाज्य संख्या के वर्ग में 24 या उसके गुणनखंड से भाग देने पर शेष हमेशा 1 प्राप्त होगा।
EX:- 11²=121, 24÷121=1 शेष,
23²=529, 8÷529=1 शेष
Q. 17²+23²+29²+31² को 8 से भाग देने पर कितना शेष प्राप्त होगा ?
solution-
शेष=1+1+1+1=4 Ans
NOTE:- यह नियम कोई भी सम power के लिए लागु होगा।
Q. (37)¹⁴⁸ को 8 से भाग देने पर कितना शेष प्राप्त होगा ?
solution-
शेष=1 Ans
➤TYPE(6):- जब विषम POWER आ जाए तो BASE में ही भाग देकर शेष निकलेंगे।
Q. (23)¹⁴³ को 12 से भाग देने पर कितना शेष बचेगा ?
solution-
12÷23=11शेष Ans
➤ प्रथम n प्राकर्तिक संख्याओं के वर्गों का योग = n(n+1)(2n+1) ∕ 6
➤ प्रथम n प्राकर्तिक संख्याओं के घनो का योग = {n (n +1) ∕ 2 }²
Q. 1²+2²+3²+..............+20²=?
solution-
20(20+1)(2×20+1) ∕ 6=20×21×41 ∕ 6=2870 Ans
Q. 1³+2³+3³+..........+11³=?
solution-
{11×(11+1) ∕ 2}²= (66)²=4356 Ans
➦ प्राकर्तिक संख्याओं के प्रगोग पर आधारित प्रश्न
x, x+1, x+2, x+3...............................
Q. 4 लगातार प्राकर्तिक संख्याओं का योग 222 हो तो सबसे बड़ी संख्या ज्ञात कीजिए।
solution-
x, x+1, x+2, x+3
= 4x+6=222
= 4x=216
x = 54
सबसे बरी संख्या = 54+3=57 Ans
Q. 2 लगातार प्राकर्तिक संख्याओं का योगफल 552 हो तो संख्याओं का योग कितना होगा।
solution -
संख्या = x, x+1
x(x+1)=552
x²+x-552=0
x²+24x-23x-552=0
x(x+24)-23(x+24)
(x-23) (x+24)=0
x=23 ,-24✖
योग = 23+24 =47 Ans
trick 552
⋀
23 24 =23+24=47 ans
NOTE:- गुणनफल के नजदीक जिस संख्या का वर्ग आएगी वही दो संख्या Ans होगा।
Q. 2 लगातार प्रकर्तिक संख्याओं का गुणनफल 342 हो तो संख्या ज्ञात करें।
solution - 342
⋀
18 19 = 18+19=37 Ans
Q. 3 लगातार प्रकर्तिक संख्याओं के वर्गों का योग 770 हो तो संख्याओं का योग ज्ञात करें।
solution - x, x+1, x+2
= x²+(x+1)²+(x+2)²=770
= x²+x²+2x+1+x²+4x+4-770=0
= 3x²+6x-765=0
= x²+2x-255=0
= x²+17x-15x-255=0
= (x+17)(x-15)=0
= x=15
= 15,16,17
योग= 48 Ans
trick 770/3=256
=15,16,17=48 Ans
NOTE:- योगफल में संख्या से भाग देंगे और पूर्ण वर्ग संख्या आने पर उसे बीच में रखेंगे और पूर्ण वर्ग संख्या नहीं आने पर नजदीक वाला VALUE चुनेंगे।
Q.2 लगातार प्रकर्तिक संख्याओं के वर्गों का योग 841 हो तो संख्या ज्ञात करें।
solution- 841/2=420
⋀
20 21, 20²=400
21²=441, 400+441=841
VVI➦ अभाज्य सख्या (PRIME NUMBER)
➨ एक से बड़ी वे प्राकर्तिक संख्या जो केवल एक अपने आप से पूर्णतः विभाज्य हो उसे अभाज्य संख्या कहते है।
EX:- 2,3,5,7,11,13.........
(2) 2 केवल एक सम अभाज्य सँख्या है।
(3) 1 से 100 के बीच में 25 अभाज्य सँख्या होती है जबकि 1 से 50 तक 15 अभाज्य सँख्या होती है
(5) 5 बड़ी किसी अभाज्य सँख्या में 6 से भाग देने पर शेष 1 या 5 प्राप्त होगा।
EX:- 6÷13=1शेष, 6÷83=5शेष
➤ TYPE(5):- तीन से बड़ी किसी अभाज्य संख्या के वर्ग में 24 या उसके गुणनखंड से भाग देने पर शेष हमेशा 1 प्राप्त होगा।
EX:- 11²=121, 24÷121=1 शेष,
23²=529, 8÷529=1 शेष
Q. 17²+23²+29²+31² को 8 से भाग देने पर कितना शेष प्राप्त होगा ?
solution-
शेष=1+1+1+1=4 Ans
NOTE:- यह नियम कोई भी सम power के लिए लागु होगा।
Q. (37)¹⁴⁸ को 8 से भाग देने पर कितना शेष प्राप्त होगा ?
solution-
शेष=1 Ans
➤TYPE(6):- जब विषम POWER आ जाए तो BASE में ही भाग देकर शेष निकलेंगे।
Q. (23)¹⁴³ को 12 से भाग देने पर कितना शेष बचेगा ?
solution-
12÷23=11शेष Ans
➧ अभाज्य संख्या पर आधारित प्रश्न :-
Q. 4 लगातार अभाज्य संख्याओं में से प्रथम तीन एवं अंतिम तीन अभाज्य संख्याओं का गुणनफल क्रमश: 385 एवं 1001 है तो सबसे बड़ी एवं छोटी अभाज्य संख्या का योग कितना होगा ?
solution- a,b,c,d चार लगातार अभाज्य संख्या है
abc =385 समीο ―1
abc =385 समीο ―1
bcd =1001 समीο ―2
समीο 1 ÷ समीο 2
abc ∕ bcd = 385 ∕ 1001
a ∕ b=5 ∕ 13
योग =5 +13=18, सबसे बड़ी संख्या =13 , सबसे छोटी संख्या=5
Q.3 अभाज्य संख्या का योग 100 है यदि एक अभाज्य संख्या दूसरे से 36 अधिक हो तो सबसे बड़ी अभाज्य संख्या ज्ञात कीजिए?
solution-
2+X+X+36=100
2X+38=100
2X=62
X=31
सबसे बड़ी अभाज्य संख्या =31+36=67 Ans
NOTE:- तीन अभाज्य संख्याओं का योग एक सम संख्या हो तो एक अभाज्य संख्या 2 जरूर होगा |
समीο 1 ÷ समीο 2
abc ∕ bcd = 385 ∕ 1001
a ∕ b=5 ∕ 13
योग =5 +13=18, सबसे बड़ी संख्या =13 , सबसे छोटी संख्या=5
Q.3 अभाज्य संख्या का योग 100 है यदि एक अभाज्य संख्या दूसरे से 36 अधिक हो तो सबसे बड़ी अभाज्य संख्या ज्ञात कीजिए?
solution-
2+X+X+36=100
2X+38=100
2X=62
X=31
सबसे बड़ी अभाज्य संख्या =31+36=67 Ans
NOTE:- तीन अभाज्य संख्याओं का योग एक सम संख्या हो तो एक अभाज्य संख्या 2 जरूर होगा |
➧अभाज्य खण्डों की संख्या निकालना हो(PRIME FACTORS):-
Q.1080 में कितने अभाज्य खंड है?
➤TYPE(7):-किसी संख्या के गुणनखंडओ की संख्या या भाजको की संख्या निकालना हो :-
नियम:- पहले वाले संख्या का अभाज्य गुणनखंड करेंगे और उसे POWER के रूप में लिखेंगे तथा प्रत्येक POWER में एक जोड़कर गुणा करने पर भाजको की संख्या प्राप्त हो जाएगा।
Q. 360 को कुल कितनी संख्याओं से पूर्णत: भाग दिया जा सकता है?
Q. 784 को कुल कितनी संख्याओं से पूर्णत: भाग दिया जा सकता है ?
➧सम एवं विषम संख्या
सम संख्या:- जो 2 से पूर्णत: विभाजित हो सम संख्या कहलाता है
EX:- 2,4,6,8,.......2n
tn=2n
➤TYPE(1):-दो लगातार सम संख्याओं के वर्गों का अंतर हमेशा 4 से पूर्णता विभाज्य होगा |
EX:- 8²-6²=64-36=28/4=7
➤TYPE(2):-दो लगातार सम संख्याओं के गुणनफल में 1 जोड़ने पर परिणाम पूर्ण वर्ग हो जाएगा
EX:- 8×10=80+1=81
CGL(2014)
Q.442× 444 के परिणाम में कितना जोड़ा जाए की परिणाम पूर्ण वर्ग हो जाए?
solution- Ans=1
➤TYPE(3):-चार लगातार सम संख्याओं के गुणनफल में 16 जोड़ने पर परिणाम पूर्ण वर्ग हो जाएगा
EX:- 2×4×6×8=384+16=400
➤TYPE(4):- प्रथम n सम संख्याओं का योग=n(n+1),
where, n=अंतिम पद / 2
Q. 2+4+6+...........+48=?
solution-
n=48/2=24
?=24×(24+1)=600 Ans
Q. 50 एवं 100 के बीच आने वाले सम संख्याओं का योग ज्ञात कीजिए?
solution-
50+54+.......+98
=(2+4+.......+98)-(2+4+........+50)
n=98/2=49, n=50/2=25
=49×50-25×26
= 2450-650=1800 Ans
trick
NOTE:- बीच वाले लगातार सम या विषम संख्याओं का योग= योग×अन्तर/4
51(52+54.......+98)99
=(50+100)×48/4
=150×48/4=1800 Ans
➦प्रथम n सम संख्याओं के वर्गों का योग = 2n(n+1)(2n+1)/3
➦ प्रथम n सम संख्याओं के घनो का योग= 2{n(n+1)}²
Q.2+4+.............+20=?
solution-
n=20/2=10
?=2(10×11)²=2×12100=24200 Ans
➧विषम संख्या
➦ वैसी संख्या जो 2 से पूर्णत: विभाजित न हो उसे विषम संख्या कहते हैं
EX:- 1,3,5,7.......tn.
tn=2n-1
➤पदों की संख्या = अंतिम पद +1 / 2
vvi
➤TYPE(1):-दो लगातार विषम संख्याओं के वर्गों का अंतर हमेशा 8 से पूर्णत: विभाज होगा
EX:- 7²=49
5²=25
49-25=24
24/8=3 Ans
➤TYPE(2):-दो लगातार विषम संख्याओं के गुणनफल में 1 जोड़ने पर परिणाम पूर्ण वर्ग हो जाएगा
EX:- 7×9=63+1=64
11×13=143+1=144 Ans
➦प्रथम n विषम संख्याओं का योग=n²
where, n=अंतिम पद +1 / 2
Q. 1+3+5+.............+47=?
solution-
n=47+1/2=24
∴ ?=n²=(24)²=576 Ans
Q. 51+53+.........+75=?
solution-
50(51+53+.......+75)76
?=(50+76)×(76-50)/4
=126×26/4=819 Ans
➦सम एवं विषम संख्याओं के प्रयोग पर आधारित प्रश्न :-
Q. चार लगातार विषम संख्याओं का योग तो सबसे बड़ी विषम संख्या ज्ञात कीजिए?
solution-
x,x+2,x+4,x+6
4x+12=264
4x=256
x=63
सबसे बड़ी विषम संख्या=63+6=69 Ans
trick
264/4=66
सबसे बड़ी=66+3=69, सबसे छोटी=66-3=63
➦ सबसे बड़ी सम या विषम संख्या= योगफल /n +(n-1)
➦ सबसे छोटी सम या विषम संख्या=योगफल /n -(n-1)
NOTE:- योगफल औसत भी कहलाता है।
Q . 15 लगातार सम संख्याओं का योग 1080 हो तो सबसे बड़ी सम संख्या ज्ञात करें?
solution:- योगफल=1080, n=15
बड़ी संख्या=1080/15+(15-1)
=72+14=86 Ans
Q.चार लगातार सम संख्याओं का योग 308 है तो अगले 4 सम संख्याओं का योग कितना होगा?
solution:- सबसे बड़ी सम संख्या=308/4=3
= 77+3=80
अगले चार सम संख्या=82+84+86+88
∴ योग=340 Ans
trick
➤ n लगातार सम या विषम संख्याओं का योग X हो तो अगले n लगातार सम या विषम संख्याओं का योग=x+2n²
x+2n²
=308+2(4)
=308+32=340 Ans
trick
➤ n लगातार सम या विषम संख्याओं का योग X हो तो पिछले n लगातार सम या विषम संख्याओं का योग=x-2n²
........................................................................................................................................................................................................................
➧ POWER वाले संख्या के परिणाम का इकाई अंक निकालना हो:-
➤TYPE(1):- यदि Base का इकाई अंक 0,1,5 एवं 6 हो तो कोई भी धनात्मक पावर के लिए परिणाम का इकाई अंक वही रहेगा
EX:-(146)³³³ के परिणाम का इकाई अंक ज्ञात कीजिए?
Ans=6
➤TYPE(2):- यदि Base का इकाई अंक 2,3,4,7,8 एवं 9 हो तो पावर के अंतिम दो अंक में 4 से भाग देंगे और जितना से शेष आएगा Base की इकाई अंक पर उतना ही पावर रखेंगे और जब से 0 आ जाए तो Base के इकाई अंक पर 4 पावर रखेंगे और जो रिजल्ट आएगा उसका इकाई अंक Ans होगा.
EX:-(128)⁷⁸⁶ के परिणाम का इकाई अंक ज्ञात कीजिए?
solution:-
4÷86=2शेष
(8)²=64
Ans=4
➤TYPE(3):-यदि प्रश्न सरलीकरण के रूप में हो तो प्रत्येक संख्या का अलग-अलग इकाई अंक निकालेंगे और चिन्ह के अनुसार हल करेंगे और जब इकाई अंक NEGATIVE आ जाए तो उसमें 10 जोड़कर Answer देंगे.
Q. (141)¹⁴³+(214)¹¹⁸+(313)¹²²-(114)¹⁴² का इकाई अंक ज्ञात कीजिए?
solution:-
=1+4²+3²-4²
=1+9=10
=0 Ans
Q.(91)⁹¹×(92)⁹²×(93)⁹³×...........×(99)⁹⁹ का इकाई अंक ज्ञात कीजिए?
solution:-
=(95)⁹⁵×(96)⁹⁶
=5×6=30
=0 Ans
Q.(117)¹⁴¹-(113)⁹⁴का इकाई अंक ज्ञात कीजिए?
solution:-
=7¹=7
=3²=9
=7-9=-2+10=8 Ans
Q. (141)¹⁴³+(214)¹¹⁸+(313)¹²²-(114)¹⁴² का इकाई अंक ज्ञात कीजिए?
solution:-
=1+4²+3²-4²
=1+9=10
=0 Ans
Q.(91)⁹¹×(92)⁹²×(93)⁹³×...........×(99)⁹⁹ का इकाई अंक ज्ञात कीजिए?
solution:-
=(95)⁹⁵×(96)⁹⁶
=5×6=30
=0 Ans
Q.(117)¹⁴¹-(113)⁹⁴का इकाई अंक ज्ञात कीजिए?
solution:-
=7¹=7
=3²=9
=7-9=-2+10=8 Ans
➤TYPE(4):-यदि power factorial के रूप में हो:-
n!=n(n-1)(n-2)..........3×2×1
Q.(214)!⁴⁵के परिणाम का इकाई अंक ज्ञात करें?
solution:-
4⁴=256
इकाई अंक=6 Ans
➤ TRICK:-जब power factorial तीन से बड़ा हो जैसे !4, !5,!8, की हो तो base के इकाई अंक पर हमेशा 4 power रखकर परिणाम निकालेंगे.
Q. [{(18)!¹³}!¹⁴]!¹⁵का इकाई अंक ज्ञात करें?
solution:- 8⁴=64×64=4×4=16=6 Ans
.......................................................................................................................................................................................................................
➦अंको की संख्या ज्ञात करना हो:-
➤TYPE(1):- 1 से 100 तक गिनती लिखा जाए तो 1 का प्रयोग 21 बार होता है और 2 से लेकर 9 तक के अंको का प्रयोग 20 बार होता है और 0 का प्रयोग 11 बार होता है.
Q. 1 से 100 तक गिनती लिखा जाए तो 7 का प्रयोग कितना बार होगा ?
solution:-
=20 बार Ans
➤TYPE(2):- गिनती लिखने में प्रयोग किए गए अंको की संख्या निकालना हो.
Q.1 से 360 तक गिनती लिखा जाए तो कुल कितने बार अंक लिखने होंगे?
solution:-
1➜9=1×9=9
10➞99=2×90=180
100➞360=3×261=783
9+180+783=972 Ans
trick
formula:-3n-108
n=360
=3×360-108=1080-108=972 Ans
Q. गिनती के अंको का प्रयोग करके 4 अंको की कितनी संख्याएं बनाए जा सकती है?
solution:-
trick NOTE:- 4 अंकों की सबसे बड़ी संख्या में से 3 अंको की सबसे बड़ी संख्या घटा देंगे।
=9999 -999 =9000Ans
➦ भाग की विधि पर आधारित प्रश्न:-
(1) सामान्य विधि
(2)गुणनखंड विधि
➧सामान्य विधि
➤भाजक)भाज्य/शेष(भागफल
➤भाज्य=भाजक×भागफल+शेष
➤N=D×Q+R
Q.भाग के प्रश्न में भाजक भागफल का 10 गुना एवं शेष का 5 गुना है यदि शेष 46 हो तो भाज्य ज्ञात कीजिए ?
solution:-
R=46
D=46×5=230
230=Q×10
Q=23
N=D×Q+R
230×23+46=5290+46
=5336 Ans
➦EXAM TYPE:-
➤भाजक निकालना
➤शेष निकालना
➤ विभाजन के शर्त पर आधारित प्रश्न
➤भाजक निकालना
➤TYPE(1):-जब दो संख्याओं एक निश्चित भाजक से भाग देने पर शेष क्रमश: r₁ एवं r₂ प्राप्त हो तथा उनके योगफल में भाग देने पर r₃ शेष प्राप्त होता है तो भाजक=R₁+R₂-R₃
Q.दो संख्याओं में एक निश्चित भाजक से भाग देने पर शेष क्रम 118 एवं 195 प्राप्त होता है जबकि उनके योग में भाग देने पर शेष 72 प्राप्त होता है तो भाजक ज्ञात कीजिए?
Q.दो संख्याओं में एक निश्चित भाजक से भाग देने पर शेष क्रम 118 एवं 195 प्राप्त होता है जबकि उनके योग में भाग देने पर शेष 72 प्राप्त होता है तो भाजक ज्ञात कीजिए?
solution:-
118+195-72=241 Ans
➤TYPE(2):-
118+195-72=241 Ans
➤TYPE(2):-
प्रिय पाठकों,
इस chapter में theory अभी बाकी है जल्द ही update कर दिए जाएंगे (last posting 26/4/2017)
आप इस website http://onlinestudyssc.blogspot.com/को follow करे maths के सभी chapter के notes मिल जाएंगे hot trick के साथ
इस chapter में theory अभी बाकी है जल्द ही update कर दिए जाएंगे (last posting 26/4/2017)
आप इस website http://onlinestudyssc.blogspot.com/को follow करे maths के सभी chapter के notes मिल जाएंगे hot trick के साथ
यदि पहली संख्या दूसरी संख्या से 25% अधिक है तो दोनो संखओ का अनुपात क्या होगा
ReplyDelete4:5
Delete5:4
Delete5:4
DeletePlzz solution
ReplyDelete100 के गुणनखंडों का योग
ReplyDelete1 se lekar 20 tak visham sankhya ko kis prakar jode ki yogfal 50 ho jaye
ReplyDeletePle solve this question
DeleteAns.(1:4)
DeleteFiroz alam
ReplyDelete1 से 100 तक उन सभी पूर्णांक संख्या का योग बताइये जो 2 और 5 से विभाज्य हों
ReplyDelete550
ReplyDeleteलगातार 35 सम संख्याओं का गुणनफल क्या होगा ?
ReplyDelete64ki power 20 × 5ki power 108 udanjhand ke anko ka yog kya hoga
ReplyDeleteतीन अभाज्य सं० का योग 100 है। यदि उनमें से एक संख्या दूसरे से 24 अधिक हो, तो उनमें से दूसरी संख्या है-
ReplyDeletea-7 b-29 c-43 d-61